
2/1/2021 C Programming-Structures (1) (3)

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 1/16

Understanding Structures

2/1/2021 C Programming-Structures (1) (3)

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 2/16

In [1]:

In [2]:

ID 1 Name: Kris Jamsa Title Programmer Salary 100000.00 Phone 928-555-1212

sizeof worker 552 bytes

#include <stdio.h>

void showEmployee(int EmployeeID, char EmployeeName[], char JobTitle[], float Sala
{
 printf("ID %d Name: %s Title %s Salary %6.2f Phone %s\n",
 EmployeeID, EmployeeName, JobTitle, Salary, Phone);
}

int main(void)
{
 int EmployeeID = 1;
 char EmployeeName[256] = "Kris Jamsa";
 char JobTitle[256] = "Programmer";
 float Salary = 100000.0;
 char Phone[32] = "928-555-1212";

 showEmployee(EmployeeID, EmployeeName, JobTitle, Salary, Phone);
}

struct Employee {
 int EmployeeID;
 char EmployeeName[256];
 char JobTitle[256];
 float Salary;
 char Phone[32];
};

#include <stdio.h>
#include <string.h>

struct Employee {
 int EmployeeID;
 char EmployeeName[256];
 char JobTitle[256];
 float Salary;
 char Phone[32];
};

int main(void)
{
 struct Employee worker;
 printf("sizeof worker %ld bytes\n", sizeof(worker));
}

2/1/2021 C Programming-Structures (1) (3)

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 3/16

In [3]:

Initializing a Structure at Declaration

#include <stdio.h>
#include <string.h>

struct Employee {
 int EmployeeID;
 char EmployeeName[256];
 char JobTitle[256];
 float Salary;
 char Phone[32];
};

int main(void)
{
 struct Employee worker;

 worker.EmployeeID = 1;
 strcpy(worker.EmployeeName, "Kris Jamsa");
 strcpy(worker.JobTitle, "Programmer");
 worker.Salary = 100000;
 strcpy(worker.Phone, "928-555-1212");
}

2/1/2021 C Programming-Structures (1) (3)

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 4/16

In [4]:

Passing a Structure to a Function

Name: Kris Jamsa

#include <stdio.h>
#include <string.h>

struct Employee {
 int EmployeeID;
 char EmployeeName[256];
 char JobTItle[256];
 float Salary;
 char Phone[32];
};

int main(void)
{
 struct Employee programmer = { 1, "Kris Jamsa", "Programmer", 100000, "928-555-1

 printf("Name: %s\n", programmer.EmployeeName);
}

2/1/2021 C Programming-Structures (1) (3)

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 5/16

In [5]:

ID 1 Name: Kris Jamsa Title Programmer Salary 100000.00 Phone 928-555-1212
ID 1 Name: Debbie Jamsa Title Manager Salary 125000.00 Phone 928-555-1213

#include <stdio.h>
#include <string.h>

struct Employee {
 int EmployeeID;
 char EmployeeName[256];
 char JobTitle[256];
 float Salary;
 char Phone[32];
};

void ShowEmployee(struct Employee worker)
{
 printf("ID %d Name: %s Title %s Salary %6.2f Phone %s\n",
 worker.EmployeeID, worker.EmployeeName, worker.JobTitle, worker.Salary,
}

int main(void)
{
 struct Employee coder = { 1, "Kris Jamsa", "Programmer", 100000, "928-555-1212"
 struct Employee manager = { 1, "Debbie Jamsa", "Manager", 125000, "928-555-1213

 ShowEmployee(coder);
 ShowEmployee(manager);
}

2/1/2021 C Programming-Structures (1) (3)

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 6/16

Revisiting Integer Division with div
In [6]:

Creating an Array of Structures

20 divided by 7 is 2 remainder 6

#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 div_t result;

 result = div(20, 7);

 printf("20 divided by 7 is %d remainder %d\n", result.quot, result.rem);
}

2/1/2021 C Programming-Structures (1) (3)

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 7/16

In [7]:

ID 1 Name: Kris Jamsa Title Programmer Salary 100000.00 Phone 928-555-1212
ID 2 Name: Debbie Jamsa Title Manager Salary 125000.00 Phone 928-555-1213

#include <stdio.h>
#include <string.h>

struct Employee {
 int EmployeeID;
 char EmployeeName[256];
 char JobTitle[256];
 float Salary;
 char Phone[32];
};

void ShowEmployee(struct Employee worker)
{
 printf("ID %d Name: %s Title %s Salary %6.2f Phone %s\n",
 worker.EmployeeID, worker.EmployeeName, worker.JobTitle, worker.Salary,
}

int main(void)
{
 struct Employee staff[2] = {
 { 1, "Kris Jamsa", "Programmer", 100000, "928-555
 { 2, "Debbie Jamsa", "Manager", 125000, "928-555-
 };

 ShowEmployee(staff[0]);
 ShowEmployee(staff[1]);
}

2/1/2021 C Programming-Structures (1) (3)

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 8/16

Passing an Array of Structures to a Function
In [8]:

ID 1 Name: Kris Jamsa Title Programmer Salary 100000.00 Phone 928-555-1212
ID 1 Name: Debbie Jamsa Title Manager Salary 125000.00 Phone 928-555-1213

#include <stdio.h>
#include <string.h>

struct Employee {
 int EmployeeID;
 char EmployeeName[256];
 char JobTitle[256];
 float Salary;
 char Phone[32];
};

void ShowStaff(struct Employee Employees[], int employeeCount)
{
 for (int i = 0; i < employeeCount; i++)
 printf("ID %d Name: %s Title %s Salary %6.2f Phone %s\n",
 Employees[i].EmployeeID, Employees[i].EmployeeName, Employees[i].JobTit
 Employees[i].Salary, Employees[i].Phone);
}

int main(void)
{
 struct Employee staff[2] = {
 { 1, "Kris Jamsa", "Programmer", 100000, "928-555
 { 1, "Debbie Jamsa", "Manager", 125000, "928-555-
 };

 ShowStaff(staff, 2);
}

2/1/2021 C Programming-Structures (1) (3)

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 9/16

Changing a Structure's Value in a Function
In [9]:

ID 1 Name: Kris Jamsa Title Programmer Salary 100000.00 Phone 928-555-1212
ID 1 Name: Kris Jamsa Title Programmer Salary 125000.00 Phone 928-555-1212

#include <stdio.h>
#include <string.h>

struct Employee {
 int EmployeeID;
 char EmployeeName[256];
 char JobTitle[256];
 float Salary;
 char Phone[32];
};

void PayRaise(struct Employee *worker, float amount)
{
 (*worker).Salary += amount;
}

void ShowEmployee(struct Employee worker)
{
 printf("ID %d Name: %s Title %s Salary %6.2f Phone %s\n",
 worker.EmployeeID, worker.EmployeeName, worker.JobTitle, worker.Salary,
}

int main(void)
{
 struct Employee coder = { 1, "Kris Jamsa", "Programmer", 100000, "928-555-1212"

 ShowEmployee(coder);
 PayRaise(&coder, 25000);
 ShowEmployee(coder);
}

2/1/2021 C Programming-Structures (1) (3)

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 10/16

Using -> to Reference a Structure Member Passed
by Reference

In [10]:

ID 1 Name: Kris Jamsa Title Programmer Salary 100000.00 Phone 928-555-1212
ID 1 Name: Kris Jamsa Title Programmer Salary 125000.00 Phone 928-555-1212

#include <stdio.h>
#include <string.h>

struct Employee {
 int EmployeeID;
 char EmployeeName[256];
 char JobTitle[256];
 float Salary;
 char Phone[32];
};

void PayRaise(struct Employee *worker, float amount)
{
 worker->Salary += amount;
}

void ShowEmployee(struct Employee worker)
{
 printf("ID %d Name: %s Title %s Salary %6.2f Phone %s\n",
 worker.EmployeeID, worker.EmployeeName, worker.JobTitle, worker.Salary,
}

int main(void)
{
 struct Employee coder = { 1, "Kris Jamsa", "Programmer", 100000, "928-555-1212"

 ShowEmployee(coder);
 PayRaise(&coder, 25000);
 ShowEmployee(coder);
}

2/1/2021 C Programming-Structures (1) (3)

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 11/16

Revisiting System Time

struct tm
{
 int tm_sec;
 int tm_min;
 int tm_hour;
 int tm_mday;
 int tm_mon; // 0 thru 11
 int tm_year; // year - 1900
 int tm_wday; // Sun 0 - Sat 6
 int tm_yday; // 1 - 365 day of year
 int tm_isdst; // 1 if daylight savings 0 otherwise
}

2/1/2021 C Programming-Structures (1) (3)

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 12/16

In [11]:

Using a Nested Structure

Date: 2-1-2021
Time: 13:06

#include <stdio.h>
#include <time.h>

int main(void)
{
 struct tm *currentDate;
 time_t seconds;

 time(&seconds);

 currentDate = localtime(&seconds);
 printf("Date: %d-%d-%d\n", currentDate->tm_mon+1, currentDate->tm_mday, currentD
 printf("Time: %d:%02d\n", currentDate->tm_hour, currentDate->tm_min);
}

2/1/2021 C Programming-Structures (1) (3)

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 13/16

In [12]:

ID 1 Name: Kris Jamsa Title Programmer Salary 100000.00 Phone 928-555-1212 Hire
Date: 9-30-2021
ID 2 Name: Debbie Jamsa Title Manager Salary 125000.00 Phone 928-555-1213 Hire
Date: 12- 8-2020

#include <stdio.h>
#include <string.h>

struct Employee {
 int EmployeeID;
 char EmployeeName[256];
 char JobTitle[256];
 float Salary;
 char Phone[32];
 struct tm {
 int Month;
 int Day;
 int Year;
 } HireDate;
};

void ShowEmployee(struct Employee worker)
{
 printf("ID %d Name: %s Title %s Salary %6.2f Phone %s Hire Date: %d-%2d-%d\n"
 worker.EmployeeID, worker.EmployeeName, worker.JobTitle, worker.Salary,
 worker.HireDate.Month, worker.HireDate.Day, worker.HireDate.Year);
}

int main(void)
{
 struct Employee coder = { 1, "Kris Jamsa", "Programmer", 100000, "928-555-1212"
 struct Employee manager = { 2, "Debbie Jamsa", "Manager", 125000, "928-555-1213

 ShowEmployee(coder);
 ShowEmployee(manager);
}

2/1/2021 C Programming-Structures (1) (3)

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 14/16

Understanding Bit Fields
In [13]:

Date: 1-25-2021
size in bytes 4

#include <stdio.h>

struct Date {
 unsigned int month: 5;
 unsigned int day: 5;
 unsigned int year: 12;
} ;

int main(void)
{
 struct Date today;

 today.month = 1; // January
 today.day = 25;
 today.year = 2021;

 printf("Date: %d-%d-%d\n", today.month, today.day, today.year);
 printf("size in bytes %ld\n", sizeof(today));
}

2/1/2021 C Programming-Structures (1) (3)

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 15/16

Understanding Unions
In [14]:

AL contains 5
AX contains 5

#include <stdio.h>

struct WordRegisters {
 unsigned int AX, BX, CX, DX, SI, DI, FLAGS;
};

struct ByteRegisters {
 unsigned char al, ah, bl, bh, cl, ch, dl, dh;
};

union REGISTERS {
 struct WordRegisters w;
 struct ByteRegisters b;
};

int main(void)
{
 union REGISTERS regs;

 regs.b.al = 5;

 printf("AL contains %u\n", regs.b.al);
 printf("AX contains %u\n", regs.w.AX);
}

2/1/2021 C Programming-Structures (1) (3)

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 16/16

What You will Learn Next

To store data from one user session to the next, C programs often use files.

#include <stdio.h>

int main(void)
{
 FILE *fp = fopen("Alphabet.txt", "r");
 char letter;

 while ((letter = fgetc(fp)) != EOF)
 putchar(letter);

 fclose(fp);
}

