2/1/2021 C Programming-Structures (1) (3)

Hands On C
500 Working Programs

Structures

Understanding Structures

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 1/16



2/1/2021 C Programming-Structures (1) (3)
In [1]: #include <stdio.h>

void showEmployee(int EmployeeID, char EmployeeName[], char JobTitle[], float Sal

{

printf("ID %d Name: %s Title %s Salary %6.2f Phone %s\n",

EmployeeID, EmployeeName, JobTitle, Salary, Phone);

}
int main(void)
{

int EmployeelD = 1;

char EmployeeName[256] = "Kris Jamsa";

char JobTitle[256] = "Programmer";

float Salary = 100000.0;

char Phone[32] = "928-555-1212";

showEmployee(EmployeeID, EmployeeName, JobTitle, Salary, Phone);
}

ID 1 Name: Kris Jamsa Title Programmer Salary 100000.00 Phone 928-555-1212

struct Employee {
int EmployeelD;
char EmployeeName[256];
char JobTitle[256];
float Salary;
char Phone[32];

}s

In [2]: #include <stdio.h>
#include <string.h>

struct Employee {
int EmployeelD;
char EmployeeName[256];
char JobTitle[256];
float Salary;
char Phone[32];

}s

int main(void)

{

struct Employee worker;
printf("sizeof worker %1d bytes\n", sizeof(worker));

}

sizeof worker 552 bytes

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 2/16



2/1/2021 C Programming-Structures (1) (3)

In [3]: #include <stdio.h>
#include <string.h>

struct Employee {
int EmployeelD;
char EmployeeName[256];
char JobTitle[256];
float Salary;
char Phone[32];

}s

int main(void)
{

struct Employee worker;

worker.EmployeeID = 1;
strcpy(worker.EmployeeName, "Kris Jamsa");
strcpy(worker.JobTitle, "Programmer");
worker.Salary = 100000;
strcpy(worker.Phone, "928-555-1212");

Initializing a Structure at Declaration

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 3/16



2/1/2021 C Programming-Structures (1) (3)

In [4]: #include <stdio.h>
#include <string.h>

struct Employee {
int EmployeelD;
char EmployeeName[256];
char JobTItle[256];
float Salary;
char Phone[32];

}s

int main(void)

! struct Employee programmer = { 1, "Kris Jamsa", "Programmer", 100000, "928-555-
printf("Name: %s\n", programmer.EmployeeName);

}

Name: Kris Jamsa

Passing a Structure to a Function

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 4/16



2/1/2021 C Programming-Structures (1) (3)

In [5]: #include <stdio.h>
#include <string.h>

struct Employee {
int EmployeelD;
char EmployeeName[256];
char JobTitle[256];
float Salary;
char Phone[32];

}s

void ShowEmployee(struct Employee worker)

{
printf("ID %d Name: %s Title %s Salary %6.2f Phone %s\n",

worker.EmployeeID, worker.EmployeeName, worker.JobTitle, worker.Salary,

int main(void)

{
struct Employee coder = {
struct Employee manager =

1, "Kris Jamsa", "Programmer", 100000, "928-555-1212"
{ 1, "Debbie Jamsa", "Manager", 125000, "928-555-1213

ShowEmployee(coder);
ShowEmployee(manager);

}

ID 1 Name: Kris Jamsa Title Programmer Salary 100000.00 Phone 928-555-1212
ID 1 Name: Debbie Jamsa Title Manager Salary 125000.00 Phone 928-555-1213

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 5/16



2/1/2021 C Programming-Structures (1) (3)

Revisiting Integer Division with div

In [6]: #include <stdio.h>
#include <stdlib.h>

int main(void)
{
div_t result;

result = div(20, 7);

printf("20 divided by 7 is %d remainder %d\n", result.quot, result.rem);
}

20 divided by 7 is 2 remainder 6

Creating an Array of Structures

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 6/16



2/1/2021 C Programming-Structures (1) (3)

In [7]: #include <stdio.h>
#include <string.h>

struct Employee {
int EmployeelD;
char EmployeeName[256];
char JobTitle[256];
float Salary;
char Phone[32];

¥
void ShowEmployee(struct Employee worker)
{
printf("ID %d Name: %s Title %s Salary %6.2f Phone %s\n",
worker.EmployeeID, worker.EmployeeName, worker.JobTitle, worker.Salary,
}

int main(void)
{

struct Employee staff[2] = {

{ 1, "Kris Jamsa", "Programmer", 100000, "928-555
{ 2, "Debbie Jamsa", "Manager", 125000, "928-555-

}s

ShowEmployee(staff[0]);
ShowEmployee(staff[1]);
¥

ID 1 Name: Kris Jamsa Title Programmer Salary 100000.00 Phone 928-555-1212
ID 2 Name: Debbie Jamsa Title Manager Salary 125000.00 Phone 928-555-1213

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 7/16



2/1/2021 C Programming-Structures (1) (3)

Passing an Array of Structures to a Function

In [8]: #include <stdio.h>
#include <string.h>

struct Employee {
int EmployeelD;
char EmployeeName[256];
char JobTitle[256];
float Salary;
char Phone[32];

}s

void ShowStaff(struct Employee Employees[], int employeeCount)
{

for (int i = ©; i < employeeCount; i++)
printf("ID %d Name: %s Title %s Salary %6.2f Phone %s\n",
Employees[i].EmployeeID, Employees[i].EmployeeName, Employees[i].JobTit
Employees[i].Salary, Employees[i].Phone);
}

int main(void)
{

struct Employee staff[2] = {

{ 1, "Kris Jamsa", "Programmer", 100000, "928-555
{ 1, "Debbie Jamsa", "Manager", 125000, "928-555-

}s

ShowStaff(staff, 2);
¥

ID 1 Name: Kris Jamsa Title Programmer Salary 100000.00 Phone 928-555-1212
ID 1 Name: Debbie Jamsa Title Manager Salary 125000.00 Phone 928-555-1213

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 8/16



2/1/2021 C Programming-Structures (1) (3)

Changing a Structure's Value in a Function

In [9]: #include <stdio.h>
#include <string.h>

struct Employee {
int EmployeelD;
char EmployeeName[256];
char JobTitle[256];
float Salary;
char Phone[32];

1

void PayRaise(struct Employee *worker, float amount)

{
}

(*worker).Salary += amount;

void ShowEmployee(struct Employee worker)

{
printf("ID %d Name: %s Title %s Salary %6.2f Phone %s\n",
worker.EmployeeID, worker.EmployeeName, worker.JobTitle, worker.Salary,
}

int main(void)

{
struct Employee coder = { 1, "Kris Jamsa", "Programmer", 100000, "928-555-1212"

ShowEmployee(coder);
PayRaise(&coder, 25000);
ShowEmployee(coder);

}

ID 1 Name: Kris Jamsa Title Programmer Salary 100000.00 Phone 928-555-1212
ID 1 Name: Kris Jamsa Title Programmer Salary 125000.00 Phone 928-555-1212

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 9/16



2/1/2021

In [10]:

C Programming-Structures (1) (3)

Using -> to Reference a Structure Member Passed
by Reference

#include <stdio.h>
#include <string.h>

struct Employee {
int EmployeelD;
char EmployeeName[256];
char JobTitle[256];
float Salary;
char Phone[32];

}s

void PayRaise(struct Employee *worker, float amount)

{
}

worker->Salary += amount;

void ShowEmployee(struct Employee worker)

{
printf("ID %d Name: %s Title %s Salary %6.2f Phone %s\n",

worker.EmployeeID, worker.EmployeeName, worker.JobTitle, worker.Salary,

int main(void)

{
struct Employee coder = { 1, "Kris Jamsa", "Programmer", 100000, "928-555-1212"

ShowEmployee(coder);
PayRaise(&coder, 25000);
ShowEmployee(coder);

}

ID 1 Name: Kris Jamsa Title Programmer Salary 100000.00 Phone 928-555-1212
ID 1 Name: Kris Jamsa Title Programmer Salary 125000.00 Phone 928-555-1212

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 10/16



2/1/2021 C Programming-Structures (1) (3)

Revisiting System Time

struct tm
{
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon; // © thru 11
int tm_year; // year - 1900
int tm_wday; // Sun @ - Sat 6
int tm_yday; // 1 - 365 day of year
int tm_isdst; // 1 if daylight savings @ otherwise

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 11/16



2/1/2021 C Programming-Structures (1) (3)

In [11]: #include <stdio.h>
#include <time.h>

int main(void)

{
struct tm *currentDate;
time_t seconds;
time(&seconds);
currentDate = localtime(&seconds);
printf("Date: %d-%d-%d\n", currentDate->tm mon+l, currentDate->tm_mday, current
printf("Time: %d:%02d\n", currentDate->tm _hour, currentDate->tm min);
}

Date: 2-1-2021
Time: 13:06

Using a Nested Structure

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 12/16



2/1/2021 C Programming-Structures (1) (3)

In [12]: #include <stdio.h>
#include <string.h>

struct Employee {

int EmployeelD;
char EmployeeName[256];
char JobTitle[256];
float Salary;
char Phone[32];
struct tm {

int Month;

int Day;

int Year;
} HireDate;

1

void ShowEmployee(struct Employee worker)
{
printf("ID %d Name: %s Title %s Salary %6.2f Phone %s Hire Date: %d-%2d-%d\n"
worker.EmployeeID, worker.EmployeeName, worker.JobTitle, worker.Salary,
worker.HireDate.Month, worker.HireDate.Day, worker.HireDate.Year);

int main(void)

{
struct Employee coder = {
struct Employee manager =

1, "Kris Jamsa", "Programmer", 100000, "928-555-1212"
{ 2, "Debbie Jamsa", "Manager", 125000, "928-555-1213

ShowEmployee(coder);
ShowEmployee(manager);

}

ID 1 Name: Kris Jamsa Title Programmer Salary 100000.00 Phone 928-555-1212 Hire
Date: 9-30-2021

ID 2 Name: Debbie Jamsa Title Manager Salary 125000.00 Phone 928-555-1213 Hire
Date: 12- 8-2020

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 13/16



2/1/2021 C Programming-Structures (1) (3)

Understanding Bit Fields

In [13]: #include <stdio.h>

struct Date {
unsigned int month: 5;
unsigned int day: 5;
unsigned int year: 12;

}s
int main(void)
{
struct Date today;
today.month = 1; // January
today.day = 25;
today.year = 2021;
printf("Date: %d-%d-%d\n", today.month, today.day, today.year);
printf("size in bytes %1d\n", sizeof(today));
}

Date: 1-25-2021
size in bytes 4

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 14/16



2/1/2021 C Programming-Structures (1) (3)

Understanding Unions

In [14]: #include <stdio.h>

struct WordRegisters {
unsigned int AX, BX, CX, DX, SI, DI, FLAGS;
}s

struct ByteRegisters {
unsigned char al, ah, bl, bh, cl, ch, dl, dh;
s

union REGISTERS {
struct WordRegisters w;
struct ByteRegisters b;
}s

int main(void)

{
union REGISTERS regs;
regs.b.al = 5;

printf("AL contains %u\n", regs.b.al);
printf("AX contains %u\n", regs.w.AX);

}

AL contains 5
AX contains 5

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 15/16



2/1/2021 C Programming-Structures (1) (3)

What You will Learn Next

To store data from one user session to the next, C programs often use files.

#include <stdio.h>

int main(void)

{
FILE *fp = fopen("Alphabet.txt"”, "r");
char letter;
while ((letter = fgetc(fp)) != EOF)
putchar(letter);
fclose(fp);
}

localhost:8888/notebooks/C Programming-Structures (1) (3).ipynb# 16/16



